

Asymmetric Core Computing for U.S. Army High-

Performance Computing Applications

by Dale Shires, Song Jun Park, Brian Henz, Jerry Clarke, Lam Nguyen,

and Kelly Kirk

ARL-TR-4788 April 2009

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-4788 April 2009

Asymmetric Core Computing for U.S. Army High-
Performance Computing Applications

Dale Shires, Song Jun Park, Brian Henz, Jerry Clarke, Lam Nguyen,

and Kelly Kirk
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2007–September 2008
4. TITLE AND SUBTITLE

Asymmetric Core Computing for U.S. Army High-Performance Computing
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dale Shires, Song Jun Park, Brian Henz, Jerry Clarke, Lam Nguyen, and
Kelly Kirk

5d. PROJECT NUMBER

9UE11C
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4788

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

High-performance computing (HPC) is in a state of transition. HPC users have traditionally relied upon two things to supply them with processing
power: speed of the central processing units (CPUs) and the scalability of the system. There are problems with this approach. Physical limitations
are curtailing clock speed increases in general-purpose CPUs, the von Neumann load-execute-store approach does not map well to every
computational problem, and systems of thousands of processors might be very inefficient depending upon processor interconnection limitations.
Several versatile, commodity-based options are coming on line that could help address these deficiencies. Options now include throughput
architectures such as graphics processing units (GPUs), reconfigurable systems built on field programmable gate arrays (FPGAs), multi- and many-
core x86-based systems, and heterogeneous systems such as the Cell processor (incorporating a standard CPU and vector processing units). Each of
these can be used to provide performance that, at one time, was only available by using Application Specific Integrated Circuits (ASICs) or large-scale
fixed HPC assets. Newer methodologies hold out the hope of being more cost efficient and deployable along with providing faster deployment and
development times and allowing the use of algorithms that remain modifiable at all stages of development and fielding. This report discusses our
research on blending these asymmetric computing resources and addresses their use from the U.S. Army HPC perspective. We focus on the different
methodologies and discuss performance from the perspective of kernels and applications that are relevant to fielding HPC technologies that will
benefit the U.S. Army warfighter.
15. SUBJECT TERMS

graphics processing unit, GPU, asymmetric core computing, reconfigurable computing, HPC, heterogeneous computing

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

32

19a. NAME OF RESPONSIBLE PERSON

Dale Shires
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-5006
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables v

Acknowledgments vi

1. Introduction 1

2. Relevant Technologies 2

3. Technical Approach 5

4. Research and Development Highlights 7

4.1 Cell Processor ..7

4.2 FPGAs ...8

4.3 GPU ...11

4.3.1 N-body ...11

4.3.2 Monte Carlo ...13

4.3.3 Obstacle Detection and Avoidance ...15

5. Emerging Directions 18

6. Conclusion 19

7. References 20

Distribution List 21

 iv

List of Figures

Figure 1. Clock frequencies of Intel processors. ...1

Figure 2. Simplified GPU and thread execution. ..4

Figure 3. FPGAs provide a flexible fabric for circuit design. ..5

Figure 4. Blowfish throughput performance (keys/second). ..10

Figure 5. Median value (floating-point) calculation requirements (seconds) using various list
sizes. ...10

Figure 6. N-body simulation results on a GPU. ..12

Figure 7. A left and right stereo camera pair and resulting disparity map showing areas near
camera (lighter) and areas distant (darker). ...15

Figure 8. Prototype UWB SAR with synchronous impulse reconstruction (SIRE).16

Figure 9. Wall clock times (in seconds) of the SIRE code using different languages and
cores. ..18

 v

List of Tables

Table 1. FPGA development time estimates...8

Table 2. Blowfish hardware details and performance comparison. ..9

Table 3. Astrophysics n-body simulation comparison. ...12

 vi

Acknowledgments

The authors wish to thank Dr. David Richie of Brown Deer Technology and the User
Productivity Enhancement and Technology Transfer effort of the DOD High Performance
Computing Modernization Program Office (HPCMO). Dr. Richie is an on-site researcher
located at the U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, in the area of
Electronics, Networking, and Systems/C4I. He provided valuable insights into new Application
Program Interfaces, optimization approaches, and directions for graphics processing units
(GPUs) being produced by AMD.

The authors also wish to thank Dr. Patrick Hanrahan and his students at Stanford University.
Dr. Hanrahan is the principal investigator for the Technical Area 4 – Enabling Technologies
component of the U.S. Army High Performance Computing Research Center. Dr. Hanrahan and
his team provided valuable insights into the Cell processor and the inner workings of GPUs.

We are grateful to Mr. Daniel Pressel for providing initial implementations of the median stack
calculation benchmarks.

The authors also wish to thank the Department of Defense HPCMO and the U.S. Naval Research
Laboratory for time and assistance with using the Cray XD1 supercomputer.

 1

1. Introduction

The high-performance computing (HPC) industry has relied on clustered computing (i.e.,
parallelism) of commodity processors and performance gains in central processing units (CPUs)
that have tracked Moore’s empirical law to field faster and faster systems. However, several
issues are becoming pronounced that are limiting the effectiveness of this approach. First, scalar
processors have for the most part followed the von Neumann architecture where a CPU follows a
fetch, execute, and store instruction path. Mapping computationally complex algorithms to this
sequence can have a limited effectiveness (many algorithms achieving only 10%–30% of peak
theoretical efficiency). Second, the “free ride” on computer performance gains in the high
performance computing world appears to be nearing an end. Dynamic power for a
complementary metal oxide semiconductor (CMOS) chip is proportional to the product of load
capacitance, the square of voltage, and switching clock frequency. Therefore, higher clock
speeds of CPUs lead to more and more generation of heat. To compensate, chip manufacturers
began shifting to more cores clocked at lower speeds (figure 1). This technique, known as
voltage scaling, provides a throughput increase by using parallelism with no increases in power
requirements (1). Parallelism is now the norm for developers who can no longer count on
increasing capabilities and speeds of single processors (2). These changes have led to a large
number of solution options for those seeking high performance.

Figure 1. Clock frequencies of Intel processors.

0

0.5

1

1.5

2

2.5

3

3.5

4

1981 1989 1995 1998 2001 2004 2007

G
H
z

Year

 2

Recognizing the shifting HPC landscape, we have engaged in a research program to assess how
advances in the computing field can be applied to U.S. Army-relevant problems. While these
technologies can be applied to a wide-range of physics-based codes, the primary focus is on
battlespace applications to move HPC closer to Soldiers and field commanders. Technologies
associated with information sciences, network sciences, and sensor systems to support the “every
Soldier as a sensor” concept are the major driving forces for U.S. Army Transformation that
includes Future Combat Systems (FCS). Computational sciences research along with computing
power is essential to realize this transformation. Exponential growth in computing hardware and
associated computing power over the last three decades provided the enabling technology to
address a wide class of U.S. Army critical applications; however, we have not been able to
harness the computing power to support operations on the battlefield due to the large foot print
requirements of traditional high-performance computing systems. Current and future forces will
rely upon network and battlefield information assimilation in complex urban environments to
enable the Soldier to accomplish the mission. For example, processing information for
situational awareness or understanding dynamic behavior of mobile ad hoc networks and
associated sensor information on the battlefield involves handling terabytes of data. Integrating
this data into simulations for actionable decisions to support field commanders will require
moving HPC technology onto the battlefield. That is, we need substantial computing capability
and associated software on the battlefield to support FCS and similar operations with confidence.

This research is assessing how the changing landscape in computing can be harnessed for
maximum deployable U.S. Army benefit. Options we are investigating include multi-core
processors, field programmable gate arrays (FPGAs), general-purpose graphics processing units
(GPUs), and heterogeneous cores such as the Cell processor. These options allow for smaller
footprint systems with tremendous speedups compared to traditional large clusters of von
Neumann general-purpose CPUs. Our goal is to combine the asymmetric capabilities of these
various cores into a complete high performance computing system. The primary focus is on
battlespace applications to move HPC closer to the Soldier and field commander. Doing so
opens up new possibilities to increase the capabilities of the Soldier and the systems being used
in many application areas (e.g., sensors and intelligence applications). Algorithm development
for applications needing improvements in speed and/or fidelity will be critical.

2. Relevant Technologies

With the trend of decreasing price and size of processors, it is easy to envision today’s
supercomputer capability on a workstation in about a decade’s time. On the other hand,
associated software to take advantage of computing power and the communication bandwidth to

 3

transfer gigabytes of data in the dynamic environment of the battlefield are not following this
trend. Hence, PetaFlop computing is feasible within the next decade but software may not catch
up to take full advantage of the hardware, especially in battlefield applications. The current best
option to achieve a fielded and mobile HPC system is through the use of throughput architectures
that combine disparate, asymmetric cores into a unified solution. These systems are focused on
raw floating-point performance (with some attention to integer-based applications as well), and
the application program interfaces (APIs) associated with them are rapidly maturing.

Throughput architectures come in various configurations and instantiations. Just about all of
them have their origins in the commercial sector where virtual world simulation found in gaming
engines requires large FLOP rates. At the bottom layer of execution, throughput architectures
rely on single instruction multiple data (SIMD) parallelism. The SIMD execution model exploits
data-level parallelism by operating a single instruction on different data sets. By having multiple
SIMD capable processors on a chip, throughput architectures can execute independent SIMD
instructions in parallel.

Hardware multi-threading attempts to hide the effect of stalls by letting the processors do some
other productive task. This technique allows the general-purpose use of GPUs to be promising
for applications with large amount of threads. GPU processing cores are heavily multi-threaded;
typically requiring thousands of threads per core to achieve good performance. Two main
factors can cause slowdown in these systems. The first deals with branches and data
dependencies in code. Codes with many switch statements and conditionals, as well as temporal
dependencies, can lead to under utilization of available computing units while waiting for results
to be computed. The second is far worse and deals with code that has to access “remote”
memory. These stalls can cost hundreds to thousands of cycles. Creating a large number of
threads helps to cover these stall delays by allowing the compute core to switch to a new thread
when one stalls. Different memories are available at different speeds, thus it is usually up to the
application developer to pay close attention to memory access patterns to achieve good speedup.
Compilers optimizations to do this task are slowly making progress.

Figure 2 illustrates a simple GPU core and how threads are executed (context switching) to keep
the core busy (3). The core (figure 2a) can execute an instruction from one thread for each clock
cycle but can maintain thread states for four threads. With the ALUs acting as SIMD processors,
each can execute a vector-type instruction in a single clock (in this case, 32 concurrent
instructions). Floating-point general-purpose vector registers are available and partitioned
among the thread contexts. At runtime, the GPU runs a copy of the executable on each of the
four thread contexts (figure 2b). T0 is executed until a stall is detected at cycle 20 (resulting
from a memory reference that needs to be fetched or an instruction to complete). A context
switch occurs to allow T1 to continue at cycle 20. T0 becomes ready again at cycle 70 and
begins to execute again at cycle 80 after the stall by T3. Notice that this schedule allows all 32

 4

(a) Example GPU core. (b) Example thread execution.

Figure 2. Simplified GPU and thread execution.

ALUs to be busy during the entire run. Also notice conceptually the large number of threads that
are required to be running to allow the runtime system to efficiently keep the ALUs busy through
context switching.

The Cell processor is an example of a chip containing heterogeneous multi-cores. The Cell has
one main processor called the power processing element (PPE) and eight co-processors named
synergistic processing elements (SPEs). Each SPE is a self-contained and independent processor
capable of SIMD computations. Put another way, each SPE can run a distinct program. A
notable difference in the Cell architecture is the absence of cache in SPEs. Instead, 256 KB of
local storage space is available for each SPE and data must be transferred via data memory
access (DMA). A common problem with these types of architectures deals with codes
experiencing a lack of arithmetic intensity. Applications that do not have heavy floating-point
calculation needs will not perform well on these systems. Another related issue is the amount of
on-chip memory available to each core. If data is used faster than it can be loaded, the
processors will stall while waiting for more data transfers to complete.

Another technology option at our disposal is reconfigurable computing. While scalar processors
typically follow the von Neumann architecture approach of fetch, execute, and store,
reconfigurable computing refers to processing with the aid of programmable logic, usually in the
form of an FPGA. With an FPGA, data path and control flow can be modified in hardware as
necessary to reduce an algorithm’s execution time. Instead of computing through a series of
instructions, a series of logic gates is created to solve a problem, thus closely matching the
algorithm to the underlying hardware (figure 3). By coupling an FPGA with a processor,
compute-intensive applications can be off-loaded from a host CPU to an optimized architecture
in an FPGA. This integration allows an FPGA to function as a powerful co-processor and
collaborate with a main CPU for performance acceleration. FPGAs are not really programmed

 5

Figure 3. FPGAs provide a flexible fabric for circuit design.

in the traditional sense of the word. Rather, they require a hardware description language that
has the concepts of concurrence built in. Due to the time-intensive development workflow
required from hardware descriptions, several vendors are developing and refining procedural
programming languages that down-compile to hardware implementations or descriptors like
Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL).

Since most FPGAs are built on Static Random Access Memory (SRAM) technology, they have
much slower clock rates than CPUs. Accordingly, they can only compete with CPUs when
enough fabric is available to create multiple processing elements that can be pipelined. For
example, assume a CPU clocked at 4 GHz compared against an FPGA at 400 MHz. Also
assume that the CPU takes one cycle to produce some result. Given this scenario, the FPGA
logic would have to be structured to allow for at least 10 “processing elements” to be created in
order to equal the performance of the CPU.

3. Technical Approach

Our approach involved identifying relevant technology and establishing a laboratory to field,
test, and investigate the various emerging components. These technologies are now part of an
Asymmetric Core Computing Laboratory that has been established. The fielded components in
the laboratory continue to evolve as the various technologies mature. Dual- and quad-core Intel-
based processors are currently being used. To better understand how reconfigurable computing
hardware can be applied, several FPGAs have been installed as well, including the Nallatech

 6

H101-PCIXM board that provides a general-purpose framework for development and testing of
reconfigurable computing. Two different GPUs have been installed. These include the NVIDIA
GeForce 8800 GTX with 128 cores and AMD’s FireStream using 320 cores. Two Sony
Playstation 3 systems that feature the heterogeneous Cell as the main compute engine were
procured and configured to run a version of Linux. The Cell has eight vector processing units
controlled by a moderately powerful PowerPC chip. Some of these components were combined
into a flexible architecture in the lab that contains a dual-core processor, FPGA board, and a
GeForce GPU to provide a combined theoretical performance of 562 GFLOPS with the three
distinct asymmetric core resources.

With the relevant technology identified, we moved toward addressing several computational
kernels that would (a) help us learn more about the technology and (b) be relevant in their own
regards to applications considered for future implementation on these resources. These small- to
moderate-sized kernels provided a convenient way to understand the various programming
languages and APIs used by the technologies. We also began working on a fielded system that
could directly benefit from the technologies we were investigating. Since asymmetric cores
require a careful partitioning to map applications to the optimal cores, we also spent a fair
amount of time profiling codes and studying the codes’ “signatures” to map the various pieces of
the algorithm to the best architecture. Determining this partitioning a priori is not yet automatic
and can be time-intensive.

As with all new technologies, several technical barriers must be addressed as these systems are
applied to Army problems. Some of these are long-term and will be addressed over time as the
technology matures. Others were more immediate as the technology was fielded to our targeted
applications in the near term. Common across all of the technologies is the rather immature,
although rapidly evolving, software development environments for the hardware solutions.
AMD’s SDK provides access to the intermediate Compute Abstraction Layer (CAL) low-level
code generated by its compiler to allow motivated developers the option to try to do better than
the compiler’s back end code generator. Anecdotally this highlights that more work is often
required for the compilers to be considered optimizing or robust. Furthermore, many of the
languages being offered to developers remain proprietary acting as a “black box” filter with little
or no details on how performance is being achieved. With FPGAs, there are noted performance
issues with high-level language approaches.

Hardware issues are also evident. While the memory densities in FPGAs have increased, the use
of floating-point units takes up a large amount of fabric space (worse for double-precision) that
limits the number of processing elements that can be created. This in turn limits the size of the
pipeline (or the number of processing elements) that can form and reduces performance. Single-
vs. double-precision on GPUs remains an issue that developers must deal with. Early generation
boards only supported single precision. Double precision is now also possible but this does
impact the overall runtime. For example, on the AMD FireStream 9270, single precision

 7

floating-point arithmetic performance is 1.2 TFLOPS. In contrast, double-precision speeds drop
by a factor of 5 to 240 GFLOPS (4). Verification and validation are software engineering
practices that developers must remain aware of as these technologies stabilize.

4. Research and Development Highlights

4.1 Cell Processor

One of our first attempts at using a heterogeneous system involved the Cell processor. The Cell
was of interest due to the coupled system of a general-purpose CPU (PowerPC) and vector
processing units known as Synergistic Processing Elements (SPEs). There was a record of
researchers achieving speedup using the processor, although the results and level of performance
were somewhat varied (5, 6). We first worked with Open Computer Vision (OpenCV) on some
real-time edge detection algorithms. We also investigated the Sequoia approach from Stanford
and the Cell Messaging Layer; both available APIs to program the Cell. Sequoia is a portable,
low-level language that attempts to map to superscalar and parallel machines through C-like
extensions (7).

However, the Cell has several issues that caused us to not pursue it more vigorously, at least in
the near term. There has been some distinction made between multi-threaded architectures and
streaming architectures, the later focusing more on the explicit attention a user must pay to
establish communication streams vice computation streams (8). The Cell can be thought of as an
example of a streaming processor; a DMA is used to move data from the main memory to the
local storage space. A stall in any SPE is extremely costly. Effective streaming poses many
difficulties, including finding applications that can effectively work with the no cache
architecture and limited memory. Furthermore, we engaged in several discussions with our
research partner Stanford University (through the U.S. Army High Performance Computing
Research Center [AHPCRC]) who had experimented with the Cell in several projects. We
learned several things from this discussion including the incredible level of effort they had to
expend to achieve speedups using the system and the difficulty of using the Cell API.
Furthermore, they provided more details on the difficulty of overcoming the limited memory
available to the SPEs. While the SPEs are efficient by having no cache and a fast access
scratchpad memory, it makes programming very complicated (9). Other issues, notably main
memory access rates and a rudimentary programming paradigm have been noted when trying to
use the system for HPC cluster computing (10). This will certainly be revisited as necessary,
largely based on what decisions will be made for a processor to populate a Playstation 4 (should
one be announced).

 8

4.2 FPGAs

Reconfigurable computing refers to performing computations using Field Programmable Gate
Arrays (FPGAs). An FPGA is a chip that flip-flops, allowing designers to program its
reconfigurable architecture to suit a specific problem at hand. FPGAs attempt to combine the
advantages of fast Application-Specific Integrated Circuits (ASICs) and general-purpose CPUs.
CPUs compute via a series of instructions, whereas FPGAs compute via a series of connected
logic gates. FPGAs can be conceptualized as reconfigurable ASICs. Reconfigurable computing
is taking a hardware approach to performing calculations. Traditionally, FPGA computing was
beneficial in special applications involving high degrees of bit manipulations (encryption) or
applications requiring field programmability (e.g., space applications). CPUs dominate the field
of computing, but recent trends indicate a shift toward multi-core, parallel architectures. This
implies that CPUs can promise increased parallelism, but not increased single-thread performance.
Because an increase in performance is not automatic with newer hardware, software development
becomes critically important. Without sufficient software to leverage its full potential of the
parallel hardware, even the most powerful hardware becomes inconsequential. This research
assessed programming aspects of FPGA development to allow us to determine realistic
performance of FPGA co-processors for integer- and floating-point based applications.

Hardware description languages, mainly VHDL and Verilog, are used for developing tailored
hardware designs for FPGA implementation. This method requires background knowledge in
digital circuits involving electric signals and logic devices. In an effort to field their technologies
into newer and more diverse areas, FPGA vendors are trying to overcome the barriers found in
programming their devices by using high-level language development approaches. High-level
languages raise the abstraction level, which in effect relieves developers from the FPGA’s low-
level details. Unfortunately, due to a lack of standards, these languages are vendor-specific and
hardware-dependent. Due to time constraints and availability, we focused on only two vendor
approaches (DIME-C and Mitrion-C). The main trade-offs related to high-level languages are
abstraction and access. Conceptually, a higher abstraction level makes programming both easier
and faster. However, visibility or access to underlying hardware, that has potential for
optimization, is lost. Our overall impressions with the three approaches are shown in table 1.

Table 1. FPGA development time estimates.

Development Stage VHDL DIME-C Mitrion-C
Background learning High Low Medium
Writing source code High Low Medium
Debug and simulation Low High Medium
Applying design changes High Low Medium
Maintaining High Low Medium

 9

Two hardware systems equipped with an FPGA co-processor were utilized in this research.
First, local Linux machines were outfitted with Nallatech H101PCIXM boards featuring Xilinx
Virtex-4 LX100 connected to the host via a PCI-X bus. Second, a Cray XD1, a system provided
by the DOD High-Performance Computing Modernization Program (HPCMP) residing at the
Naval Research Laboratory, offers Virtex-II ProVP50 and Virtex-4 LX160 additions to the
system.

The algorithms studied included the integer-based Blowfish encryption hashing function and
floating-point median calculation with a bubble sort at its core. The hashing technique follows
the OpenBSD password authentication where the hardware design is set to perform a brute-force
attack. Median calculation, derived from real-world signal processing of noisy data, evaluates
the feasibility of floating-point operations on modern FPGA systems. Median values are
determined by applying the bubble sort routine (used for simplicity) to a list of numbers.

The encryption algorithm was implemented on various platforms and languages. Performance
results are measured in terms of throughput (number of keys tested per second). Details on the
hardware used and the results achieved are available in table 2 and figure 4. A late addition to
this study was the use of a multi-threading GPU. The NVIDIA GeForce 8800 GTX was used for
this with the software being written using the Compute Unified Device Architecture (CUDA)
language. The ability to incorporate low-level hardware optimizations using VHDL allowed us
to achieve best performance. While they do allow for quicker fielded solutions, higher-level
approaches incorporate an overhead associated with automatic translation that proved to be
damaging to performance.

Table 2. Blowfish hardware details and performance comparison.

Language

Processing
Hardware

Clock
Frequency

(MHz)

One Unit
Execution Time

(µs)

Processing
Units

Throughput

(keys/s)
ANSI C Xeon 3000 54 1 18,518
VHDL Virtex-4 LX100

FPGA
65 120 11 91,666

DIME-C Virtex-4 LX100
FPGA

51 1850 4 2162

Mitrion-C Virtex-2 Pro
VP50 FPGA

100 822 2 2433

Virtex-4 LX160
FPGA

100 823 4 4860

 10

Figure 4. Blowfish throughput performance (keys/second).

The very simple FPGA-based median value floating-point algorithm failed to outperform a
general-purpose Intel processor (figure 5). This is primarily because floating-point units require
more resources. For example, a 32-bit integer adder requires 32 slices whereas a 32-bit floating-
point adder requires approximately 380. This increased hardware fabric requirement severely
limits the number of processing elements that can be formed in the FPGA. Since FPGAs are
built on SRAM technology, they have much slower clock rates than CPUs. Accordingly, they
can only compete with CPUs when enough fabric is available to create multiple, pipelined
processing elements or when the algorithm executes poorly on a CPU general-purpose
architecture. Currently, floating-point area requirements are too expensive for efficient FPGA
implementations. Due to time constraints, a more detailed and customized solution using
VHDL was not attempted.

Figure 5. Median value (floating-point) calculation requirements (seconds)
using various list sizes.

2162 4860

18518

46547

91666

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

DIME‐C
(FPGA)

Mitrion‐C
(FPGA)

C (CPU) CUDA (GPU) VHDL (FPGA)

0

50

100

150

200

250

5 50 75 128
List Size

GPU CPU FPGA (DIME‐C) FPGA (Mitrion‐C)

 11

FPGAs provide versatility, custom dedicated design, and low-power operation. Adaptable
hardware performance can be achieved for applications demanding high computational
requirements. Compared to ASICs, the reconfigurable characteristic of an FPGA reduces time to
market since the fabrication process is not necessary. As for potential impact to the U.S. Army,
field-dependent and compute-intensive applications with rapidly changing requirements can
benefit from utilizing FPGA technology. One favorable area is information processing with its
computationally challenging problem size due to large amounts of data acquired by ever
increasing numbers of sensors. Possible applicable areas would be in signal processing for
combat vehicle systems (e.g., radar processing systems). Driver-assistance applications such as
adaptive cruise control, target recognition, collision warning, and lane warning would require
higher processing capabilities requiring parallel signal processing. Here, the flexibility of FPGA
systems can support evolving algorithms resulting from changes in mission and terrain
environment.

4.3 GPU

4.3.1 N-body

Several computational kernels were implemented on GPUs. The first was the n-body method
used to solve Newton’s laws of motion for large numbers of interacting bodies. These methods
are used in many applications of interest to the DOD and U.S. Army including molecular
dynamics (MD), particle physics, and plasma physics. The computational requirements for these
methods increase as the square of the number of interacting particles, i.e., O(n2) so that a system
with 20 points takes 4 as many computations as a system with 10 points. Traditionally these
algorithms have used parallel processing techniques to simulate ever larger model systems, and
they scale quite well to thousands of processors. In many of these methods, the computational
kernel is small but heavily utilized. This results in a method that is ideally suited to the use of
GPUs for acceleration.

In this effort, two applications have been considered, namely, an astrophysical simulation and an
open source MD code. The first of these, the astrophysics simulation, is completely re-
implemented within a GPU framework for maximum acceleration. The second application,
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) from Sandia National
Laboratories, is accelerated by offloading the intensive computational kernel to the GPU while
maintaining the original code structure. Both of these approaches have advantages and
disadvantages that will be discussed. Sample output from both codes is shown in figure 6.

Since there are many n-body algorithms consuming large numbers of cycles on DOD
supercomputers, one immediate impact of accelerating these applications is that many hours of
CPU time could be offloaded to GPU systems such as scientific visualization clusters that would
normally house high-end GPUs. This would free up the more general purpose CPUs on current
cluster systems for other applications that are not as easily ported to GPUs. For instance, the

 12

Figure 6. N-body simulation results on a GPU.

port of the LAMMPS application to GPUs resulted in an overall speedup of about 4.5, so that
eight GPUs could do the work of 36 CPU cores. The astrophysics application showed even
greater speedup of about 60 so a small system with 4 GPUs could match the performance of
240 CPU cores. A comparison of the CPU and GPU is shown in table 3 for different numbers of
simulated bodies. In the future, this will allow for the utilization of these algorithms in a small
form factor, portable architecture that could be used on or near the battlefield.

Table 3. Astrophysics n-body simulation comparison.

No. of Bodies CPU Kernel
(s)

GPU Kernel
(s)

1,000 0.2 0.01
5,000 4.0 0.09

10,000 18.8 0.32

N-Body algorithms have many characteristics that make them potential candidates for
acceleration using GPUs. These include large numbers of independent computations, i.e., each
atom interacts with many other atoms, high floating point operation (FLOP) counts, and fine
granularity. This last item is due to the fact that the interactions can be computed independently
rather than being cumulative. In n-body simulations, the majority of time is typically spent
computing the potential function, or computing particle interactions. In computing the potential
function the distance from all neighboring atoms must be computed, a task that is O(n2). A
commonly used potential in the MD method is the Lennard-Jones potential as described by
equation 1.

(a) 10,000 node n-body simulation (b) Sample MD model simulated using LAMMPS

 13

 


























612

4
rr

rV
 , (1)

where V(r) is the potential energy, ε is the potential well depth, σ is the distance at which the
potential is 0, and r is the distance between atoms. For improved performance, a cutoff distance
is used, outside of which the particle interactions are effectively 0. An efficient force
computation therefore requires a neighbor list that stores the particles within the cutoff distance
of each other.

One interesting implementation tradeoff for LAMMPS on the GPU is that although the
interactions for atom pairs is symmetric, so that dV(ri,j)/dr = -dV(rj,i)/dr, it is faster to recalculate
the force acting on rj,i. This is because the access to main memory in order to copy the results
requires many more cycles to complete than the actual computation. Taking this into
consideration, we note that the GPU is performing about 2 the number of floating point
operations that the CPU does and is still achieving a 4.5 overall speedup. Another performance
issue is the transfer rate of data from main memory to the GPU. This occurs over the PCI-
Express bus with the GeForce 8800 GTX video card having a transfer rate of about 86 GB/s.
This factor must be taken into consideration when large datasets must be transferred to the GPU
for computation. If the amount of computation does not offset the data transfer time, it will not
be efficient to use GPUs.

By using GPUs it has been possible to improve the performance of an optimized molecular
dynamics application by a factor of 4.5 all the way to a factor of 60. As we can see from the
acceleration results, the improved performance of an application can approach the theoretical
speed-up based on peak FLOP rates if one is inclined to completely rework an application into
the GPU framework. This is labor intensive and primarily feasible for relatively small code
bases, unless a significant investment is warranted. On the other hand, accelerating a specific
portion of an application is relatively easy to do so long as the computational load far outweighs
the communication requirements (and the computations are floating-point based). GPUs present
researchers with a unique piece of hardware for developing floating-point intensive applications,
and GPUs are fairly low cost components because of the massive gaming industry that requires
ever better graphics and performance, driving down the cost of off-the-shelf hardware.

4.3.2 Monte Carlo

Another interesting kernel that appears in many codes requiring a global optimum solution is the
Monte Carlo method. We chose to investigate this algorithm through a computational stereo
matching process to produce a very fine, globally optimized disparity map where every pixel in
one image is matched with its corresponding pixel in the stereo pair. This method is also quite
tolerant of slight variations in the image pair and can deal well with occlusion (areas not capable
of being perfected matched due to obstructions in the image pair). Just as with other Monte
Carlo algorithms, this approach requires a significant number of floating-point operations.

 14

However, the process of matching pixels typically requires only local interactions. On a digital
computer memory, this translates into local memory references since the images can be mapped
to contiguous memory blocks. Furthermore, the amount of processing for each pixel remains
uniform. All of these factors lead to an approach that is promising for effective GPU
implementation.

Computational stereo matching describes the process of synthesizing the mechanics of binocular
vision. Stereo camera pairs are aligned along the y and z axes and slightly offset in the x axis
(horizontal). Because of binocular parallax, these cameras (referred to as the left and right
camera pair) will acquire slightly different images of the scene due to the horizontal shift. A
point P in the three-dimensional (3-D) scene is projected onto the left and right camera
photosensitive plates at PL and PR, respectively. The disparity is the difference in the locations
of PL and PR that results from the camera shift in the x axis. This disparity, along with details of
the camera optics system, can be used to determine P’s position in the world. For example, a
point very distant from the cameras will appear to be at the same vertical and horizontal position
on monitors attached to the left and right camera pairs. However, a point close to the camera
pair will not be in the same position on the monitors. Rather, the point on the left monitor will
be displaced (the disparity) to the right from the corresponding point on the right monitor.

Once the matching points are found in an image, an inverse perspective transform or simple
triangulation can be used to derive the two lines where the projection of the world point strikes
the photosensitive plate of the camera. When these lines are intersected, the 3-D characteristics
of the scene can be recovered. The ability to properly match stereo camera pair images is
important to any application in which distance or range information must be extracted from an
image. One such application is plotting terrain contours from images shot by aerial camera pairs.
Computer vision, biometrics, and robotics are also fields where this technique is important. The
system is also passive; it does not require active sensing devices that could be problematic for the
mission requirements. This technique also provides a way to perform image registration. Image
registration attempts to match images taken at different times and can provide details on changes
that might have occurred.

This process requires a global optimization. Since the digital image data maps pixel intensities
to a relatively low resolution, there are many possible matches in the local sense. That is,
swatches of one image may appear to map other portions of the stereo pair. To perform stereo
ranging, the whole image must be taken into account. Simulated annealing provides an
optimization technique to locate a global optimum. Annealing involves heating a solid and
letting the molecules rearrange themselves. The temperature is then slowly lowered allowing the
molecules to settle into a low energy state (thermal equilibrium). This algorithm mimics this
process using a Monte Carlo search. A disparity map is maintained for the image pair and is
randomized at the start in the range [0..maximum disparity]. Random, local state transitions in
the map are performed by varying the disparity value only slightly. If the change in energy

 15

(defined by a brightness and smoothness constraint) results in a lower energy level, it is
accepted. If the delta energy is higher, the change is only accepted with a probability within the
Boltzman distribution. The brightness constraint enforces the rule that matched pixels should
have similar intensity (e.g., gray scale or color) values. The smoothness constraint asserts that
the horizontal shift of an element should be roughly equal to that of its neighbors. This is
necessary since the first constraint is strictly local and stereo correspondences are local
ambiguous. Without this constraint, surfaces would not be spatially coherent (10).

An algorithm to perform the simulated annealing routine was developed and implemented on the
GeForce 8800 GTX GPU using CUDA. Several test cases were validated on the GPU, including
computer-generated random dot stereograms and an actual stereo pair as shown in figure 7. The
results were impressive. Even with interactive visualization of the disparity map as it was
forming, causing extensive PCI-Express bus traffic, the 8800 GTX code ran ~25 faster than a C
version of the code running on an Intel Xeon 3.00 GHz processor. This algorithm also provided
valuable lessons on memory management within the GPU and a better understanding of the
maturity of the CUDA compiler.

Left Image Right Image Disparity Map

Figure 7. A left and right stereo camera pair and resulting disparity map showing areas near camera (lighter) and
areas distant (darker).

4.3.3 Obstacle Detection and Avoidance

To support the U.S. Army vision for increased mobility, survivability, and lethality, the Sensors
and Electron Devices Directorate (SEDD) at the U.S. Army Research Laboratory (ARL) has
designed and developed the forward-looking ultra-wideband (UWB) synthetic aperture radar
(SAR) (test platform shown in figure 8). The radar is based on time-domain wideband impulses
and uses a data acquisition technique called Synchronous Impulse REconstruction (SIRE) that

 16

Figure 8. Prototype UWB SAR with synchronous
impulse reconstruction (SIRE).

allows it to employ relatively slow analog to digital converters (ADCs) to digitize wideband
signals. The configuration assumes that the radar and targets are stationary during the data
acquisition cycle when, in reality, target signatures suffer distortions in phase and shape because
of the radar motion. The phase error leads to significant loss in target radar cross-sectional
values in resulting imagery and the shape errors destroy the frequency contents of the targets and
thus the ability to discriminate targets from other objects. These errors are mitigated by a signal-
processing method developed to recover the accuracy of the target signatures affected by radar
motion. This approach was applied to simulated data and measured data from the SIRE radar.
The result was perfect reconstruction using the simulated data and significant improvement in
the resulting SAR image for the measured data (11).

The computational requirements for this processing are significant. Including data acquisition
rates and integration using forward motion, along with parameters such as platform speed and
sub-image size, the operation count quickly exceeds 20 million operations per second. These
operations are distributed over several signal and image processing filters such as forward
motion processing and backprojection image formation. The mathematics is predominately
floating-point with additions, multiplications, divisions, and square roots. The high FLOP rate
requirements made this an ideal candidate as we considered using asymmetric core computing
techniques to increase computational performance for battlespace applications. Our goal was to
use these technologies to speed the processing to achieve near or at real time speeds.

Due to the high floating-point requirements of this code, we decided to target the NVIDIA GTX
8800 GPU hardware and the associated CUDA API components in our Asymmetric Core
Computing Laboratory for speedup. The 8800 GTX has 128 cores clocked at 1.35 GHz with a
FLOP rate of about 345 GFLOPs. CUDA provides a “C”-like programming interface where
kernels are written to run on the device (GPU) and are callable from the host (CPU).

 17

Our starting point was an initial code written in Matlab. Matlab is widely used in the Signal and
Image Processing (SIP) community and is best at providing a wide-range of functionality with an
easy-to-use scripting language. However, execution speed is not one of its strong points. This
code was deconstructed and re-implemented in the C computer language. This effort took a fair
amount of work as several routines, such as the not-a-knot spline used in Matlab for curve fitting,
had to be reconstructed in C. The code expansion factor (as determined from source lines of
code) was about 3.75 since many Matlab calls required several lines of C code to produce the
same functionality. A profile of the Matlab code and the C code showed roughly the same code
characteristics. Over a small set of test frame data, about 60% of the total execution time in
Matlab was spent performing the backprojection module (76% of total in C). The majority of the
time is spent computing 3-D distance calculations. Given the fact that so much time is spent in
the routine and the high rate of floating point instructions per branch taken, we chose to
concentrate on this module for GPU implementation.

The 8800 GTX uses a fast context switching design for threads executing on the 128 compute
cores. Accordingly, it is best to use a fine-grain approach to parallelism as one maps an
algorithm to the device. Accordingly, one pixel of each 100  250 frame is assigned to a thread.
If a thread stalls waiting for a computation to complete (such as a division operation requiring
several clock cycles), the runtime system will context switch to a new thread so the core can
continue to work. Device compilers are not yet mature, but during the execution of this project
NVIDIA published a profiler to assist developers in finding clues to source code transformations
that might help in reducing runtimes. Several CUDA source code optimization techniques were
used to minimize branch divergence and maximum coalesced memory calls and on-chip memory
use.

The CPU used (for Matlab and C) in these tests consisted of a dual-core Intel Xeon processor
clocked at 3.0 GHz. The charts in figure 9 show the achieved performance for the overall SIRE
code (a) and the backprojection module alone (b) of processing 32 m. Overall, the SIRE radar
processing code using GPU acceleration is running at ~31 faster than the baseline code. The
backprojection routine alone is computing at two orders of magnitude faster (~110). The
radar’s data acquisition is performed with the platform moving at an average speed of about
1 m/s. The Matlab code was only performing at rates around 0.11 m/s or about 10 slower than
real time processing. With the accelerated code, the current physical parameters are easily
exceeded with a potential of about 3.5 m/s processing.

Further code speedup may be possible. The initial conversion was done in a sequential, control-
flow approach where the C code follows a flow chart amiable to real time processing. This
approach can limit GPU performance due to data transfers over the PCI-Express bus (frame data
is moved from the CPU to the GPU for each call to the backprojection routine). It may be
possible to restructure the C code if the system is to run in post-processing mode only. This
could be done by loading more than one frame at a time on the GPU for parallelism across the
frames and pixels rather than waiting for one frame to complete at a time.

 18

(a) Total SIRE execution time. (b) Backprojection module execution time.

Figure 9. Wall clock times (in seconds) of the SIRE code using different languages and cores.

5. Emerging Directions

Software engineering research is vital to achieve the potential speedups provided by an
asymmetric core computer. There are several concerns that will need to be addressed. New
approaches will be required for algorithm design and analysis; traditional models might not
always work. For example, on GPUs an O(n) work algorithm may actually require a longer run
time than an O(n log n) approach. Redundant calculations are, in many cases, preferable to
memory operations. The tradeoff in program development time and efficiency also needs to be
better understood. Furthermore, historic optimization approaches as applied to superscalar von
Neumann architectures, such as loop unrolling, may not always be beneficial. As long as some
compiler, implementation, and runtime details remain hidden from developers, more work will
have to be done to discover those transforms that might lead to an increase in performance. The
field is currently wide-open and challenging. An integrated approach using computer science,
computer engineering, and electrical engineering is required to deal with these new technologies
in order to achieve an optimal solution.

Recently, many vendors are signing on to the Open Computing Language (OpenCL) effort (12).
This standard is open and is designed to allow efficient use of heterogeneous computing
resources. OpenCL has a software stack consisting of a platform layer, a runtime system for
resource management, and a compiler. The platform layer allows a query and select system to
allow algorithms to select the optimal computing device available (based on load and the
application’s signature). It also supports both the data-parallel and task-parallel paradigms for
parallel computing. Hence, it is applicable to conceivably all parallel tasks.

Another interesting development in GPUs is the use of superscalar processing cores. This is
another level of parallelism that has been added to the AMD FireStream cores. The raw floating-

137.5

12.7
4.37

0

20

40

60

80

100

120

140

160

Matlab (CPU) C (CPU) CUDA (GPU)

4.701

0.562
0.043

0

1

2

3

4

5

Matlab (CPU) C (CPU) CUDA (GPU)

 19

point capacity of the 800 cores in the AMD FireStream 9270 is immense but not easily achieved.
Maximum performance is often only achieved after careful code analysis and the targeted use of
clever algorithms, tricks, and optimizations.

As we progress in this research, we will be looking at using more asymmetric cores (such as a
combined FPGA, GPU, and CPU approach) in algorithms or parallelizing across numerous
asymmetric cores. This will involve detailed algorithm analysis and selection of cores based on
code signatures. The difficulties here are predominately load balancing, selection of either task
or data parallelism, and a way to synchronize and perform data transfers. A simplified example
of this is the Folding at Home project at Stanford where individuals can offer their idle
processors (whether it is Windows PCs, Linux workstations, Playstation 3s, etc.) to a largely data
parallel application. These issues will need to be addressed as various streaming and multi-
threaded architectures find their way to fielded units such as the Company Operations and
Intelligence Cells (COICs). To be fully effective, this will involve some research on work
distribution and load balancing among the components.

Several questions will have to be addressed as we consider a runtime query system for load
distribution and balance. How would resources characterize their capabilities and report them to
the runtime system? How would task parallelism be represented as compared to data
parallelism? How would network topologies connecting the various cores be represented? The
general distributed data processing (DDP) problem will be studied as there are several tools and
techniques that might be applicable. Different applications will probably be needed at the
various layers. For example, data movement might be implemented by integrating numerous
hosts using an approach such as the message-passing interface (MPI).

6. Conclusion

There is a fundamental change occurring in the HPC field as throughput architectures gain in
importance, market share, and raw floating-point computational capacity. Portable and even
hand-held HPC is quickly becoming a reality, and a concerted effort is needed to make these
technologies viable to Army forces. We have been able to show a considerable amount of
speedup in many applications and kernels. Unfortunately, the performance gains achieved are at
times proportional to the amount of effort put into the task. New approaches are holding out
some promise of moving these technologies more into the open source arena, thus allowing
researchers more direct understanding and control at low levels. These efforts should greatly
facilitate the maturation of compiler and API technologies. The performance of these new
hardware approaches is providing a way to field HPC and we look forward to continued research
and development efforts to transition these new technologies to Army applications.

 20

7. References

1. Bhandarkar, D. Multi-Core Microprocessor Chips; Motivation and Challenges; Intel Corp.,
May 2006.

2. Koch, G. Discovering Multi-Core: Extending the Benefits of Moore’s Law. Technology at
Intel Magazine July 2005.

3. Fatahalian, K.; Houston, M. A Closer Look at GPUs. Communications of the ACM 2008,
51 (10).

4. AMD. Ultimate Compute Performance; FireStream 9270 Product Literature, 2008.

5. De Fabritiis, G. Performance of the Cell Processor for Biomolecula Simulations,
Computational Biochemistry and Biophysics Lab: Barcelona, Spain, 2007.

6. Olivier, S.; Prins, J.; et al. Porting the GROMACS Molecular Dynamics Code to the Cell
Processor. IEEE Parallel and Distributed Processing Symposium, 2007.

7. Fatahalian; Knight; et al. Sequoia: Programming the Memory Hierarchy. Proceedings of
Supercomputing, Tampa, FL, November 2006.

8. Mattson; Lethin; et al. Stream Virtual Machine and Two-Level Compilation Model for
Streaming Architectures and Languages. Presentation at Language Runtimes ’04, October
2004.

9. Scarpazza, B.; Villa, O.; Petrini, F. Programming the Cell Processor; Dr. Dobb’s Journal;
9 March 2007.

10. Barnard, S. A Stochastic Approach to Stereovision. In Readings in Computer Vision;
Addison-Wesley: New York, NY, 1987.

11. Nguyen, L. Signal Processing Technique to Remove Signature Distortion in ARL
Synchronous Impulse Reconstruction (SIRE) Ultra-Wideband (UWB) Radar; ARL-TR-4404,
U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2008.

12. Munshi, A. OpenCL: Parallel Computing on the GPU and CPU; SIGGRAPH, 2008.

NO. OF
COPIES ORGANIZATION

 21

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK PE
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 22

 1 PRGM DIR
 C HENRY
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 2 HPC CTRS PROJ MGR
 B COMMES
 CHF SCNTST
 D POST
 10501 FURNACE RD
 STE 101
 LORTON VA 22079

 1 DIR USARL
 AMSRD ARL CI
 J GOWENS
 2800 POWDER MILL RD
 ADELPHIA MD 20783-1197

 1 J OSBURN
 CODE 5594
 BLDG A49 RM 15
 4555 OVERLOOK RD
 WASHINGTON DC 20375-5340

 1 AIR FORCE RSRCH LAB
 MTRLS & MFG DIRCTRT
 R PACHTER
 AFRL MLPJ 3005 HOBSON WAY
 BLDG 651 RM 189
 WRIGHT PATTERSON AFB OH
 45433-7702

 1 AIR FORCE RSRCH LAB
 K HILL
 AFRL SNS
 BLDG 254 2591 K ST
 WRIGHT PATTERSON AFB OH
 45433-7602

 1 AFRL IF
 R LINDERMAN
 525 BROOKS RD
 ROME NY 13441-4505

 1 NVL OCEANOGRAPHIC OFC
 OFC OF THE TECH DIR
 J HARDING
 CODE OTT
 STENNIS SPACE CENTER MS 39529

 1 INFO TECHLGY LAB
 US ARMY ENGR RSRCH & DEV CTR
 D RICHARDS
 VICKSBURG MS 39810

 1 SPAWAR SYS CTR
 C PETERS
 BLDG 606 RM 318
 53360 HULL ST
 SAN DIEGO CA 92152

 1 ARNOLD ENGRG DEV CTR
 C VINING
 1099 SCHRIEVER AVE STE E205
 ARNOLD AIR FORCE BASE TN 37389

 1 AIR FORCE RSRCH LAB
 SENSORS DIRCTRT
 T WILSON
 2241 AVIONICS CIR
 WRIGHT PATTERSON AFB OH 45433

 1 US ARMY RSRCH & DEV CTR
 NVL CMND CNTRL & OCEAN
 SURVEILLANCE CTR
 HPC COORDNTR & DIR
 DOD DISTRIBUTED CTR
 NCCOSC RDTE DIV D3603
 L PARNELL
 49590 LASSING RD
 SAN DIEGO CA 92152-6148

 1 UNIV OF TENNESSEE
 ASSOC DIR
 INNOVATIVE COMPUTING LAB
 COMPUTER SCI DEPT
 S MOORE
 1122 VOLUNTEER BLVD STE 203
 KNOXVILLE TN 37996-3450

 2 SOUTH CAROLINA STATE UNIV
 EXEC DIR LS SCAMP
 S ALLEY
 J GUYDON
 300 COLLEGE ST NE
 PO BOX 7212
 ORANGEBURG SC 28117

NO. OF
COPIES ORGANIZATION

 23

ABERDEEN PROVING GROUND

 19 DIR USARL
 AMSRD ARL CI
 R NAMBURU
 AMSRD ARL CI H
 C NIETUBICZ
 B SHEROKE
 AMSRD ARL CI HC
 P CHUNG
 J CLARKE
 M LEE
 D PRESSEL
 D SHIRES
 R VALISETTY
 AMSRD ARL CI HM
 P COLLINS
 M KNOWLES
 AMSRD ARL CI HS
 L BRAINARD
 D BROWN
 R CAMPBELL
 T KENDALL
 K SMITH
 AMSRD ARL WM
 P PLOSTINS
 AMSRD ARL WM BC
 J SAHU
 P WEINACHT

 24

INTENTIONALLY LEFT BLANK.

